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Abstract
Neurodegenerative disorders are consequences of progressive and irreversible loss of neurons due to unwanted apoptosis
which involves caspases, a group of cysteine proteases that cleave other proteins and inactivate them. Among several different
groups of caspase enzymes, caspases-3 plays a key role in apoptosis and are a therapeutic target for their inhibition. In pursuit
of better caspase-3 inhibitors, a quantitative structure-activity relationship (QSAR) analysis was performed on a series of 1,3-
dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c] quinolines as caspase-3 inhibitors using WIN CAChe 6.1 and Medicinal
Chemistry Regression Machine. The best QSAR model was selected and validated by internal and external validation method.
The values of statistical data are r ¼ 0.955, F ¼ 72.95, SEE ¼ 0.397, q2 ¼ 0.885, SPRESS ¼ 0.44. The present study reveals
that when the conformational minimum energy is increased, and lowest unoccupied molecular orbital energy and highest
occupied molecular orbital energy are decreased the biological activity can be increased. On the basis of a selected QSAR
model, we designed a new series of 1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines compounds, calculated
their caspases inhibitory activity and found that the designed compounds were more potent than the existing compounds.
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Introduction

Neurodegenerative disorders which include Alzhei-

mer’s disease [1] and Huntington’s disease [2] are

major consequences of excessesive apoptosis of

neurons. This abnormal apoptosis is also responsible

for occurrence of brain ischemia [3], myocardial

infraction [4] and liver disease [5]. Current drug

treatments are only partially effective and generally

work by improving the function of the neurons that

are still alive, rather than influencing the underlying

mechanisms leading to their death [6].

Caspases, a group of cysteine proteases that cleave

their substates after aspartic acid residues are the key

executioners of apoptosis [7]. Among the identified

caspases, caspase 3 is of particular interest, since it

appears to be very important in the progression of AD

(Alzheimer’s disease). Caspases can be divided into

initiator caspases(caspase 2, caspase 8, caspase 9, and

caspase 10) and effectors caspases based on the

presence of a large prodomain at their amino-terminal

region. Initiator caspases containing a long prodo-

main, generally act in early stages of a proteolytic

cascade, whereas effector caspases, (caspase 3, caspase

6, and caspase 7) act downstream and are involved in

the cleavage of specific cellular proteins [8].

The initiation of this caspase cascade reaction is

regulated by caspase inhibitors. Inhibitors of caspase-3

were described as promising neuroprotectants [9].

Many of the compounds such as isatins [10],

peptidealdehydes [11], homophthalimides [12], qui-

nazolinones [9] have been reported as caspase

inhibitors because of having electrophilic carbonyls

that interact with target site and show inhibitory action.

ISSN 1475-6366 print/ISSN 1475-6374 online q 2008 Informa UK Ltd.

DOI: 10.1080/14756360701652476

Correspondence: R. K. Agrawal, Reader, Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Sciences,
Dr. H. S. Gour Vishwavidyalaya, Sagar (M.P.) - 470 003, India. E-mail: dragrawal2001@yahoo.co.in

Journal of Enzyme Inhibition and Medicinal Chemistry, June 2008; 23(3): 424–431



Computational chemistry has developed into an

important contributor to rational drug design. Quan-

titative structure activity relationship (QSAR) modeling

results in a quantitative correlation between chemical

structure and biological activity. Senior author of the

article Dr. R. K. Agrawal and his team has developed a

few quantitative structure-activity relationship models

to predict biological activity of different group of

compounds [13]–[18]. In continuation of such efforts,

in this article, we have performed QSAR analysis to

explore the correlation between physicochemical and

biological activity of 1,3-dioxo-4-methyl-2,3-dihydro-

1H-pyrrolo [3,4-c] quinolines [19] using modeling

software WIN CAChe 6.1 and statistical software

Medicinal Chemistry Regression Machine.

Materials and methods

The biological activities of all 25 compounds were

collected from the reported series (Table I) [19]. All

the twenty-five compounds were built on workspace of

molecular modeling software WIN CAChe 6.1, which

is a product of Fujitsu private limited, Japan. The

energy minimization was done by geometry optimiz-

ation of molecules using MM3 (Molecular Mech-

anics) followed by MOPAC-AM1 (Austin model) by

using root mean square gradient of 0.1 and 0.001

respectively. The physicochemical properties were

calculated on project leader file of the software. These

properties were fed manually into statistical software

named, Medicinal Chemistry Regression Machine

(Biosoft) and a correlation matrix was made to select

the parameters having very less intercorrelation and

maximum correlation with activity. This was followed

by multiple linear regression analysis to achieve best

model.

Correlation matrix of the parameters in best model

is given in Table II, observed and calculated values

are shown in Table I. Internal validation was carried

out by Leave one out (LOO) method using statistical

software STATISTICA. The cross-validated coeffi-

cient, q2, was calculated using the following

equation:

q2 ¼ 1 2
PRESS

PN
i¼1 ð yi 2 ymÞ

2

PRESS ¼
XN

i¼1

ðypred;i 2 yiÞ
2

Where yi is the activity for training set compounds,

ym is the mean observed value, corresponding to the

mean of the values for each cross-validation group,

and ypred,i is the predicted activity for yi. The LOO

predicted values are shown in Table I.

In present study the calculated descriptors

were conformational minimum energies (CME),

Zero-order connectivity index (CI0), First-order

connectivity index (CI1), Second-order connectivity

index (CI2), dipole moment (DM), total energy at its

current geometry after optimization of structure (TE),

heat of formation at its current geometry after

optimization of structure (HF), highest occupied

molecular orbital energies(HOMO), lowest unoccu-

pied molecular orbital energies(LUMO), octanol-

water partition coefficient(LOGP), molar refracti-

vity(MR), shape index order 1 (SI1), shape index

order 2 (SI2), shape index order 3 (SI3), Zero-order

valance connectivity index (VCI0), First-order valance

connectivity index (VCI1), Second-order valance

connectivity index (VCI2). (Physicochemical par-

ameters data will be provided on request). Leave 33%

out crossvalidation was also performed.

On the basis of model 5, a series of 14 compounds

(Table IV) were designed with the objective of finding

higher potent molecules than existing 1,3-dioxo-4-

methyl-2, 3-dihydro-1H-pyrrolo [3,4-c] quinolines.

The independent variables were calculated and put in

model 5 to obtain predicted biological activities of all

14 compounds of the designed series (Table V). The

structures of these 14 compounds have shown some

relationships with the activity.

Results and discussion

In pursuit of better caspase-3 inhibitors having

improved biological activity compared to the existing

compounds reported [19] in series 1,3-dioxo-4-

methyl-2, 3-dihydro-1H-pyrrolo [3,4-c] quinolines

(Table I), a quantitative structure-activity

relationship analysis was performed by using Win

CAChe 6.1 and Medicinal Chemistry Regression

Machine (Biosoft). Multiple linear regression analysis

results five statistically significant QSAR models

Log ð1=IC50Þ ¼ 0:0688 ð^0:0060ÞCME

2 0:3192 ð^0:0789ÞLog P

þ 2:6967 ð^0:2821Þ

n ¼ 25; r ¼ 0:926; s ¼ 0:496; F ¼ 65:99;

r2 ¼ 0:857; q2 ¼ 0:821; SPRESS ¼ 0:543

ð1Þ

Log ð1=IC50Þ ¼ 0:0518 ð^0:0053ÞCME

2 3:6813 ð^0:6658ÞLUMO

2 5:7349 ð^1:3601Þ

n ¼ 25; R ¼ 0:946; s ¼ 0:424; F ¼ 94:47;

R2 ¼ 0:896; q2 ¼ 0:867; SPRESS ¼ 0:467

ð2Þ
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Table I. 1,3-dioxo-4-methyl-2,3-dihydro-1H-pyrrolo[3,4-c] quinolines with observed calculated and predicted biological activity data

.

Log (1/IC50) (mM)

Comp. No. R1 R2 Obs. Cal. Predicted activity by LOO method

1 F H 21.798 20.960 20.895

2 Br H 21.569 21.093 21.031

3 H 0.678 0.867 0.958

4 H CH3 20.803 20.992 21.189

5 Br CH3 20.199 20.637 20.618

6 CH3 1.357 1.325 1.477

7 H CH2CO2CH3 20.667 20.747 20.951

8 F CH2CO2CH3 20.398 20.264 20.325

9 Br CH2CO2CH3 0.337 20.394 20.432

10 CH2CO2CH3 1.796 1.524 1.544

11 H CH2CH2CO2CH3 21.367 21.040 21.160

12 F CH2CH2CO2CH3 20.740 20.604 20.654

13 Br CH2CH2CO2CH3 20.033 20.737 20.804

14 CH2CH2CO2CH3 1.432 1.158 1.155

15 H 20.909 20.681 20.321

16 Br 20.405 20.331 0.118

17 1.824 1.609 1.850

18 Br 0.444 0.548 0.708
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Table I – continued

Log (1/IC50) (mM)

Comp. No. R1 R2 Obs. Cal. Predicted activity by LOO method

19 1.481 1.610 1.488

20 1.699 2.062 1.990

21 1.678 2.043 2.024

22 1.638 1.333 1.401

23 1.260 1.714 1.314

24 2.398 2.479 2.461

25 1.796 1.137 1.126

Obs – Observed biological activity, Cal – Calculated biological activity, LOO – Leave one out.
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Log ð1=IC50Þ ¼ 0:0575 ð^0:0074ÞCME

2 0:1240 ð^0:1134ÞDM

2 4:0142 ð^0:7194Þ LUMO

2 5:9506 ð^1:3684Þ

n ¼ 25; R ¼ 0:949; s ¼ 0:42; F ¼ 63:94;

R2 ¼ 0:901; q2 ¼ 0:867; SPRESS ¼ 0:47

ð3Þ

Log ð1=IC50Þ ¼ 0:0537 ð^0:0099ÞCME

2 3:7375 ð^0:7228ÞLUMO

2 0:0018 ð^0:0077Þ MR

þ ð25:6422 ^ 1:4473Þ

n ¼ 25; R ¼ 0:947; s ¼ 0:43; F ¼ 60:28;

R2 ¼ 0:896; q2 ¼ 0:849; SPRESS ¼ 0:49

ð4Þ

Log ð1=IC50Þ ¼ 0:0622 ð^0:0072ÞCME

2 1:2489 ð^0:623ÞHOMO

2 2:3886 ð^0:898Þ LUMO

2 14:9946 ð^4:792Þ

n ¼ 25; R ¼ 0:955; s ¼ 0:397; F ¼ 72:95;

R2 ¼ 0:912; q2 ¼ 0:885; SPRESS ¼ 0:44

ð5Þ

Where IC50 ¼ molar concentration of drug required

to 50% inhibition of enzyme caspase-3, n ¼ No. of

data points, r ¼ correlation coefficient, s ¼ Standard

Error of Regression, F-ratio ¼ F-ratio between

variances of calculated and observed value, q2 ¼

cross validated r2.

Out of above five models, model 5 was selected as

the best model on the basis of high q2 values.

Model 5 reveals that in order to increase biological

activity we need to decrease HOMO, LUMO energies

values and increase CME values. The selected model

was externally validated by randomly making training

set of 20 compounds and test set of 5 compounds

(6, 7, 13, 18 and 20) (Table III). QSAR was performed

for training set and a model 6 was developed. This

model was used to predict the biological activities of

test set of compounds.

Log ð1=IC50Þ ¼ 0:068 ð^0:008ÞCME

2 1:450 ð^0:659ÞHOMO

2 2:172 ð^0:990Þ LUMO

2 16:389 ð^5:105Þ

n ¼ 20; r ¼ 0:962; s ¼ 0:398;

F ¼ 66:29; r2 ¼ 0:926

ð6Þ

The observed and estimated values of biological

activities with residuals and predicted activities of test

set of compounds are given in Table III. Observed and

predicted biological activity for test set of compounds

show that the prediction ability of this model is good.

Leave 33% out crossvalidation was also performed

to confirm the predictivity of the selected model

Table II. Correlation matrix, variance inflation factor of the

physico-chemical parameters and biological activity.

Variables

Log

(1/IC50) CME HOMO LUMO VIF*

Log (1/IC50) 1

CME 0.866 1 2.404

HOMO 0.060 0.445 1 2.577

LUMO 20.670 20.364 0.437 1 2.383

*VIF – Variance inflation factor.

Table III. Observed and calculated activities for training set and

predicted activities for test set compounds.

Comp. No. Obs. Cal. Pred.

1 21.798 21.203 –

2 21.569 21.261 –

3 0.678 0.856 –

4 20.803 21.195 –

5 20.199 20.658 –

6* 1.357 – 1.496

7* 20.667 – 20.960

8 20.398 20.396 –

9 0.337 20.447 –

10 1.796 1.627 –

11 21.367 21.291 –

12 20.740 20.779 –

13* 20.033 – 20.821

14 1.432 1.193 –

15 20.909 20.458 –

16 20.405 0.067 –

17 1.824 1.916 –

18* 0.444 – 0.727

19 1.481 1.531 –

20* 1.699 – 2.043

21 1.678 2.074 –

22 1.638 1.494 –

23 1.260 1.262 –

24 2.398 2.583 –

25 1.796 1.217 –

Obs – Observed biological activity, Cal – Calculated biological

activity, Pred – Predicted biological activity, * - Test set compounds
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Table IV. The new designed series of compounds based on model 5

.

Comp. No. R1 R2

1

2

3

4

5

6

7

8
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Table IV – continued

Comp. No. R1 R2

9

10

11

12

13

14

Table V. The physico-chemical properties and predicted activities of the designed series of compounds.

Comp. No. CME HOMO LUMO Predicted activity (Log1/IC50) Predicted IC50 (mM)

1 17.769 29.722 22.074 3.206 0.000622

2 32.674 29.25 22.226 3.907 0.000124

3 30.818 29.111 22.123 3.372 0.000425

4 32.319 28.939 22.22 3.482 0.00033

5 24.442 28.584 22.233 2.580 0.00263

6 33.644 29.196 22.151 3.721 0.00019

7 33.301 29.151 22.139 3.615 0.000243

8 26.28 29.049 22.265 3.351 0.000446

9 27.034 29.288 22.263 3.692 0.000203

10 21.976 210.206 22.494 5.076 0.000008

11 10.393 210.161 22.392 4.055 0.00008

12 2.689 29.599 22.358 2.793 0.001611

13 13.995 210.087 22.164 3.642 0.000228

14 8.962 210.075 22.237 3.489 0.000324
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(Equation 7).

Log ð1=IC50Þ ¼ 0:062 ð^0:009ÞCME

2 1:092 ð^0:906Þ HOMO

2 2:486 ð^1:245Þ LUMO

2 13:669 ð^ 6:933Þ ð7Þ

q2 ¼ 0.879, Average of absolute values of predicted

residuals (Average Pres) ¼ 0.187.

Equation (7), q2 value indicates that the prediction

ability of the selected model (equation 5) is good.

The selected model indicates that increase in

conformational minimum energy would increase

the biological activity of compound. The biological

activity is increased when highest occupied molecular

orbital energy and lowest unoccupied molecular

orbital energy are decreased. Thus we conclude that

the biological activity will be increased if substituents

that bring about changes in the molecule as mentioned

above are attached to it.

The presence of a 2-nitropyrrolidine-1-sulfonyl

group at position R1 and a substituted hydramine on

position R2 increases the biological activity in a greater

amount than a substituted morpholine sulfonyl moiety

and 2-substituted 1,3,5-trimethyl-1H-pyrazol-4yl

group (24) which was shown to be a highly active

compound in the reported series [19].

The predicted activities of newly designed series

(Table V) of compounds show that they all have

predicted activities ranging from IC50 ¼ 0.000008–

0.00263mM whereas the reported series of 1,3-dioxo-

4-methyl-2, 3-dihydro-1H-pyrrolo [3,4-c] quinolines

[19] has most active compound with IC50 ¼ 0.004mM.
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